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The oscillations of a curved interface are considered, neglecting the effects of 
gravity. The system under consideration consists of a right, circular, cylindrical 
tank of finite length, partially filled with an inviscid, incompressible, wetting 
liquid. When the container spins about its axis of revolution, the large-scale 
vapour cavity takes an elongated spheroid-like shape, symmetric about the axis 
of rotation. The fluid-vapour interface will oscillate about the equilibrium 
configuration if disturbing forces are present. The case where the vapour cavity 
touches the walls of the tank is not included in this investigation. 

The equations of motion are linearized. However, the resulting eigenvalue 
problem is non-linear. Surface tension and rotation are taken into account only to 
the extent allowed by a linearized stability theory. 

The self-sustained oscillations are governed by a partial differential equation 
of elliptic type, the field equation of the perturbation pressure. According to the 
results obtained from theory, all eigenfrequencies for this case are greater than 
twice the angular speed of the tank. The first two eigenfrequencies can be com- 
puted with high accuracy. The relation between the bubble shape and the eigen- 
frequency is shown in a graph for a specific example. 

The governing differential equation is hyperbolic for forced oscillations in- 
duced by a small force field of constant magnitude and direction in an inertial 
frame of reference. A solution for this problem exists only in case of a cylindrical 
tank of infinite length. Discontinuities in the velocity components occur in the 
flow field. A numerical example has been carried out. 

1. Introduction 
In  low gravitational environments, forces like surface tension and the centri- 

fugal force, induced by slow rotation of the fluid, will have a dominating effect on 
the large-scale equilibrium configuration and the dynamics of a fluid system. For 
example, a right circular cylindrical tank, partially filled with a wetting liquid, 
spins about its axis of revolution with constant angular speed and is placed in a 
weak gravitational (zero-g) field. Then the surface tension at the interface, to- 
gether with the centrifugal force, cause the vapour cavity (bubble) inside the 
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vessel to take an elongated spheroid-like shape, situated axially symmetrically 
about the axis of rotation. Equilibrium configurations for various constant angu- 
lar speeds have been studied by Rosenthal(l962). A concise survey on the litera- 
ture related to this field is given in a review article by Habip (1965). 

The present paper deals with the exploration of the nature of the liquid inter- 
face oscillations in a rotating tank and the possibility of rotational stabilization. 

The chosen frame of reference is fixed in the tank and rotates with it. The 
perturbation velocities, the interface wave amplitude, and the disturbing forces 
are assumed to be small. Thus in the equations of motion, the equation of con- 
tinuity, and the boundary conditions terms involving quadratic or higher orders 
of the perturbation quantities are neglected. 

The fluid is assumed to be inviscid and incompressible. Surface tension and 
rotational velocity components are both essential in the study. They are taken 
fully into account as far as a linearized theory will allow. 

For this rotating fluid oscillation problem there are two frequency ranges for 
which the disturbances are of an entirely different character, For w > 2, the type 
of the governing partial differential equation is elliptic, while for w < 2, the flow 
field is described by a hyperbolic equation. The method of analysis and the physi- 
cal interpretation of the flow phenomena are entirely different. 

For the elliptic case, the bubble shape is approximated by a prolate spheroid. 
A spheroidal co-ordinate system is found useful because it allows a straight- 
forward analysis. Hence, associated Legendre functions can be employed for the 
series expansion of the solution. A special method has been employed in order to 
account for the homogeneous boundary condition at  the wall of the tank. The 
resulting eigenvalue problem for the relative frequency of oscillation is non- 
linear, since the eigenfrequency is included as a parameter in the formulation of 
the differential equation as well as the boundary conditions. The eigenfrequencies 
are obtained through a successive approximation procedure. This procedure 
proved to be rapidly convergent for the numerical computations performed for a 
sequence of examples. 

The result for this case indicates, that for the circumferential mode m = 2, the 
first eigenfrequency greater than two corresponds to the first mode of vibration 
in the meridian plane. Hence, for higher modes of oscillation the flow field is 
certainly elliptic in nature. 

For a forced oscillation, induced by a reduced gravity field of constant magni- 
tude and direction in an inertial frame of reference, the relative frequency of 
oscillation is less than two. The governing differential equation is hyperbolic, 
hence the method of analysis is different. Consequently, the structure of the flow 
field is different from that of the above-mentioned elliptic case. The mathematical 
problem (Cauchy and Goursat problem) is transformed into integro-differential 
equations which can be integrated numerically by means of Picard’s method of 
successive approximations. It is found that a steady solution in a cylindrical tank 
of finite length does not exist. However, a solution exists in a cylindrical tank of 
infinite length. The perturbations extend to infinity. A numerical example for 
this forced oscillation problem has been carried out. 

In  the present work we consider only oscillations which are symmetric with 



Oscillations of a vapour cavity 25 1 

respect to the equatorial plane of the bubble, i.e. symmetric with respect to the 
variable 5 in the cylindrical co-ordinate system, and with respect to the variable 
,8 in the prolate spheroidal co-ordinate system. 

2. Field equation for the perturbation pressure 

ence can be written in the following form (Morgan 1951): 
The equations of motion governing the fluid flow in a rotating frame of refer- 

1 
a s + 2 a x q + D x ( a x r ) + q . V q  at = F--V@, P 

where q denotes the relative (perturbation) velocity vector, D the constant angu- 
lar velocity vector, r the position vector from the origin of the rotating co- 
ordinate system to the point occupied by the fluid particle, and F the external 
force per unit mass of the fluid. We further denote the density of the liquid by p 
and the pressure by @. In  the present problem the basic fluid flow is in a state of 
rigid body rotation with respect to the inertial frame of reference and hence is at 
rest with respect to the rotating, non-translating frame as referred to in this 
investigation. By neglecting the quadratic terms of the perturbation velocity 
components a linearized system of equations is obtained. This system can be 
written in a cylindrical co-ordinate system ( r ,  0, z )  as 

with {a, a, S} as the components of the perturbation velocity vector, (&, Fo, &} as 
the components of the external force, and !J as the constant angular speed of the 
rotating tank. 

The equation of continuity reads 

i a  i a o  a0 
r ar r a0 az -- (&)+--+- = 0. 

The system of differential equations can be made dimensionless by choosing 
the semi-minor axis c of the undisturbed bubble as the length scale and Q-1 as 
the time scale. Further, in our case, the acting external perturbing force is as- 
sumed to originate from a force field which is transverse to the direction of the 
tank axis. This field has a constant direction and magnitude in the inertial frame 
of reference and hence will appear to be oscillatory in the chosen rotating frame 
of reference. Then the pressure can be written as 

1; = &pSPc2(v2 + 2p) + epcy eifnt+@) + f j O L ,  (3) 
wherepis the dimensionless perturbation pressure, a constant, and the time- 
dependent, second term on the right-hand side takes account of the perturbation 
force effects. The constant acceleration transverse to the axis of rotation is 
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denoted by F. Its direction is fixed in the inertial frame of reference. The 
dimensionless equations of motion and the equation of continuity are given as: 

i a  i a v  aw 
--(p)+--+- = 0, 
7 a7 786 

where 7 = r/c ,  [ = x/c and {u, v, w> are the dimensionless perturbation velocity 
components, respectively . 

We further define the following dimensionless numbers 

E = P ! ~ , ~ C ~ / ~ T ,  B = €p@/T, 
where E is the ratio of the magnitude of the centrifugal force to the surface ten- 
sion force and B is the ratio of the magnitude of the transverse perturbation force 
field to the surface tension force. The coefficient of surface tension is denoted 
by T .  For a small disturbance, B is required to be much smaller than E .  By 
eliminating the velocity components from the continuity equation, we obtain the 
governing field equation for the fluid flow 

This partial differential equation exhibits some very distinct properties. Let 
us assume that the perturbation pressure can be written in the form 

P ( 7 ,  6,  c, t )  = P(7, 6, C) eiwt, (6) 
where w denotes the perturbation frequency relative to the rotating system, 
i denotes the imaginary unit and the real part of the right-hand side has to be 
used for physical interpretation. 

With this set-up the field equation for the perturbation pressure is transformed 
into 

and it follows that the foregoing equation is of elliptic type when w > 2 ,  and of 
hyperbolic type when w < 2. The last term on the left-hand side of (7) vanishes 
if w = 2. Similarly, the velocity components can then be expressed explicitly in 
terms of the perturbation pressure and its derivatives: 
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Now let the perturbation velocity {u, v, w> be divided into two parts (ul, vl, wl> 
and {u,, v,, w,), such that 

The velocity component {ul, vl, wl} is irrotational because it is the gradient of a 
scalar function. For the velocity component (u2, v2, w,}, we have 

where v = {u, w, w) and v2 = {u2, w2, w,). 

Hence, the velocity field can be characterized as follows. 
(a)  For w > 2, the magnitude of the rotational velocity component is smaller 

than the magnitude of the irrotational one. Their ratio tends to zero at the rate 
l/o as w tends to infinity, 

( b )  For w < 2, the magnitude of the rotational velocity component is larger 
than the magnitude of the irrotational one. Their ratio tends to infinity of the 
order O( 1/w2) as w tends to  zero. The vorticity effect is so dominating that the 
velocity field may have a cellular structure. An example can be found in Phillips 
(1960). 

(c) For w = 2, the partial differential equation is indeterminate in the sense that 
the 5-dependence is arbitrary. Any solution of the form 

P(% 8, c.7 t )  = M T 7  0) a-) + M-)} e", 

where ~ ( 7 ~ 0 )  satisfies the field equation and the boundary conditions and any 
functions TIT,([) and w2(5), which fulfil the boundary conditions, are admissible. 
The solution is not unique. Hence, in the linearized theory such a flow is unstable. 

If the tank-liquid system rotates at a constant angular speed, the equilibrium 
bubble interface is a closed surface of revolution about the axis of rotation. The 
exact shape of the bubble has been obtained explicitly by various investigators. 
The bubble is elongated along the axis. As indicated in Rosenthal (1962), the 
bubble is similar to, and slightly larger than the prolate spheroid with the same 
semi-minor and semi-major axis. For the case of no rotation, the shape is a sphere 
and in the limiting case the bubble elongates to  a tube of infinite length when 
E = 0.5. 

In  the following sections the problem is solved separately for the frequency 
ranges w > 2 and w < 2. 
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3. Solution for the elliptic case, w =- 2 

In  order to allow a straightforward analysis, the exact bubble shape is approxi- 
mated by a prolate spheroid which has the same semi-major and semi-minor 
axes as the exact bubble. With this approximation, the perturbation pressure 
field can be expanded in terms of associated Legendre functions, and the bound- 
ary conditions can be formulated also at the approximate location. 

The affine transformation of the space co-ordinates 

will reduce the field equation (7) to  

Another co-ordinate transformation is needed for the analysis of this problem. 
The cylindrical co-ordinates (7,8, p) are transformed into prolate spheroidal 
co-ordinates (a, p, 8) by means of 

where a is a scale constant which will be determined by the shape of the bubble. 
7 = @[(a2- 1) (1 -p2)]4, p = &a/?, 8 = 8, (10) 

In  this co-ordinate system the equation for the pressure field becomes 

It should be noted that the field equation is separable in the cylindrical co- 
ordinates (q,8, p) as well as in the prolate spheroidal co-ordinates (a,p,  8). 

The next step in our analysis is to formulate the boundary conditions at  the 
rigid tank wall and the free liquid-vapour interface. 

At the plane end disks of the tank the normal velocity, which is in the p- 
direction, must vanish. Thus 

where I = L/2 c with L as the length of the tank. At the cylindrical portion of 
the tank wall the normal velocity component, which is in the 7-direction, must 
vanish. Hence, 

ap 2ap 

a7 7 ae 
i w - + - -  = 0 at q = yo, 

where T,I~ = R/c with R as the radius of the tank. The bubble interface shall first 
be specified in the spheroidal co-ordinate system before the boundary conditions 
are set up. By taking into account the stretching due to the affine co-ordinate 
transformation, the bubble can be identified as one of the co-ordinate surfaces 
a = a, = constant, where a, is given by 

with K as the ratio of the semi-major axis to the semi-minor axis of the tank. 
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The scale constant a which appears in the relations (lo), defining the co- 
ordinate transformation between (q ,  8, p) and (a, p, d), is then 

2 a=------ 
(a; - l)* * 

It is important to note here that for each different combination of bubble shape 
and frequency w, the transformation is different. Hence the perturbation of the 
interface can be written in the form 

a - a. = a,(,& 8) eid, (16) 

where the function a,(/3,0) is small such that lal[ < (a;- 1) and /all < ao. 

surface. Mathematically this condition can be written as 
Now a bounding surface F(a,  p,8, t )  = 0 of a continuous medium is a material 

(17) 
a 
at -{F(a,B, 8, t ) }  = 0, 

with 

In the present case we have 

F(a,  /3,0, t )  E a -ao - a,(/3, 8 )  eiwt = 0,  (19) 

Neglecting quadratic terms in the above equation there results 

da 
- - iwa,(/3,8) eiof = 0. at 

The perturbation velocity component in the a-direction, va, may be written 
in terms of the pressure and its derivatives. It turns out that 

d a  " r 2 - p 2 ) ' ,  ( w 2 - 4 ) -  aa, = ______ 4iw (a2-1) ap 8a ap 

(22) 

va = ha-l, h = - - 
dt a 2 a 2 - 1  at a2 (a2 - ,PI aa + aa(a2 - /PI ae 7 

where ha denotes a scale factor. Then the above results can be summarized in 
the following equation 

A dynamical boundary condition shall also be satisfied besides the above 
kinematical boundary condition. The pressure at both sides of the interface, 
together with the surface tension force, must be in equilibrium with the centri- 
fugal and inertia forces. Thus 

+pQzc2(q2 + 223) + ~ p c r  ei(nl+e)la=ao+al + (@oL - jloa) = - (T/c) J*, (24) 

where Poa denotes the constant cavity pressure and J* the curvature of the per- 
turbed bubble. 
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Substituting now the proper quantities into the foregoing equation and sub- 
tracting the quantities which are originally in equilibrium (static equilibrium 
configuration of t  herotating tank-fluid system with no disturbance forces acting) 
from both sides, we find 

with po as the perturbation pressure to be evaluated a t  the interface, and J* - J 
as the change of curvature, where J denotes the curvature of the undisturbed 
bubble. Finally, this dynamic boundary condition can be put into the form 

8E(Qa2a,a,(l -P2)+po}+Byei("t+B) = - ( J * -  J ) .  (26) 

The change of curvature J* - J is a lengthy expression in terms of p, 0, a,(P, O ) ,  
and the &st and second derivatives of a1(B, 0) with respect to P. The procedure 
of calculation follows the method outlined in Struik (1950). 

All the energy transfer and other important dynamical effects are contained in 
the boundary conditions at the free interface. The eigenfrequencies are deter- 
mined by this boundary condition. 

Now equation ( 1  1) in the prolate spheroidal co-ordinates is separable and after 
a few steps of standard manipulations the solution of the field equation for the 
perturbation pressure is obtained in the form: 

m m  

m = l  n=m 
~ ( a ,  P, 8) = C C [ArnnP,"(a) +Bmn &,"(&)I P3P)eirno* (27) 

In the above representation, the functions P,"(a), PE(,&) and &,"(a) are the 
Legendre associated functions of the first and the second kind, respectively. 
The coefficients Am, and B,, are constants to be determined by the boundary 
conditions. The dependence of the variable 8 is given by eirne, where m = 0,1,2,  . . . . 
The above eigenfunctions have been chosen to satisfy the boundary condition 
at  the bubble interface, A suitable linear combination of them must now be 
chosen so that the condition a t  the outer rigid boundary is satisfied also. Circum- 
ferential modes for different values of m are linearly independent, the summation 
over m may be dropped and each mode handled separately. 

In  the following we shall construct a sequence of eigenfunctions which has the 
following properties : (a)  the eigenfunctions are harmonic inside the tank; 
(b)  each eigenfunction satisfies part of the required boundary conditions at the 
rigid wall of the tank; (c) any normal velocity perturbation at  the wall of the tank 
can be expanded in a converging series in terms of the eigenfunctions in this 
sequence. 

With this sequence of eigenfunctions, we can reduce the exterior boundary 
condition to the requirement that the surface integrals, formed between P and 
the first N eigenfunctions over the entire surface of the exterior boundary, are 
all zero 

~ ~ P ( a , B , s ) B n ( r l , s , ~ ) d a  = 0 (n = 1 , 2 , * * * , ~ ,  (28) 

where the sequence of eigenfunctions is denoted by Bn and the entire surface 
of the exterior boundary is denoted by C. 
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Let P be represented in the cylindrical co-ordinate system by 

P(7 ,0 ,P )  = U(7)  V(0 )  W(P). 
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Together with equation (9), we obtain the following system of uncoupled ordinary 
differential equations: 

We shall treat the cases h2 > 0 and h2 c 0 separately, 

( A )  The case h2 > 0 

The boundary condition prescribed for this case is that the normal velocity com- 
ponent vanishes at  the plane end disks: 

By means of equation (29) and this boundary condition, we obtain the following 
sequence of eigenfunctions 

where I ,  is the modified Bessel function of the first kind. The corresponding 
normal velocity component at  the cylindrical wall is given as 

The properties for this sequence of eigenfunctions can be summarized as 
follows: (a )  the normal velocity component at  the disk ends of the tank vanishes; 
( b )  the normal velocity component representations at  the exterior boundary are 
orthogonal to each other; (c)  any normal velocity perturbation at  the cylindrical 
wall can be expanded as a converging series in terms of the eigenfunctions in 
this sequence. 

( B )  The case h2 < 0 

The main purpose for constructing these eigenfunctions is that any normal velo- 
city perturbation a t  the exterior boundary can be expanded as a converging 
series in terms of these eigenfunctions. Hence the choice of a boundary condition 
for the eigenfunction is more or less free. In the present case there is no straight- 
forward boundary condition that can be prescribed such as in case (A) .  The 
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following boundary condition has been selected 
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(33) 

We choose this boundary condition because this is the weakest boundary con- 
dition among a variety of possible ones, and the eigenfunctions thus obtained do 
not depend on the parameter w .  

For this case the following sequence of eigenfunctions is obtained 

+, = J,(h,v) cosh (h,,u) ei(wi+me), (34) 

where J, is the Bessel function of order m, and A, are the solutions, put in ascend- 
ing order according to their magnitude, of the equation 

The corresponding velocity components u and w derived from the above eigen- 
functions are: 

2m 
- J',(h,v) + - J,(h,v) cosh (h,p) ei(wt+me), 

An 7 
u, = - 

ih, w w, = - J,(h,r) sinh (Amp) ei(wt+me). 
w2-4 

The properties of this sequence of eigenfunctions are summarized as follows: 
(a) after orthogonalization with respect to the first sequence of the eigenfunctions 
as obtained in the case (A) ,  each of the eigenfunctions obtained in this case will 
satisfy the homogeneous boundary condition at the cylindrical boundary. 
( b )  in the domain restricted to the end disks of the tank, the normal velocity 
component representations are orthogonal to  each other. Any normal velocity 
perturbation in this domain can be expanded as a converging series of the 
eigenfunctions in this sequence. 

The eigenfunctions of sequences ( A )  and (B) ,  evaluated at  the exterior bound- 
ary and normalized, can be written as 

Sequence ( A )  

at the cylindrical wall, 

Sequence (B)  

(37) 
+n = J m ( L  7 0 )  cash 

'Osh 
at the cylindrical wall, 

(A ,  19) 

$, = J,(h,y) at the plane end disks, J 
with n = 1,2,  .... 
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We shall form a single sequence of eigenfunctions out of the sequences ( A )  and 
( B )  so that this single sequence is the final sequence we wanted. 

By returning to the prolate spheroidal co-ordinates, the zeros of the function 
P r ( p )  are uniformly distributed along the 9-variable, where is defined as 
cos 9 = p. Let the co-ordinate surface passing the intersections of the cylinder 
with the end disks be denoted by /3 = +_ Po. For sufficiently large numbers of n, 
the number of zeros of the function P,"(p) outside the hyperboloids and the 
number of zeros inside approaches a constant ratio 

where COST, = Po, and qo < +n. 

The new sequence of eigenfunctions {On} is denumerated from the sequence ( A )  
and the sequence (B)  in such a way that in the h s t  N terms of the new sequence, 
the ratio of the members from sequence ( A )  to the members from sequence (B) ,  
shall always be the rational number closest to v. 

The eigenfunctions in the sequence {On> can be orthogonalized by using the 
Hilbert-Schmidt procedure. In  the present study, only the homogeneous bound- 
ary condition haa to be satisfied. The sequence {an> can be used directly. The 
results obtained are equivalent to those obtained by using the orthogonalized 
sequence of eigenfunctions. 

In  the integrals (28), the function P and the eigenfunctions On are expressed 
analytically in two different co-ordinate systems. Hence, these integrals can be 
handled conveniently only in a numerical fashion. 

Returning to the interior boundary condition (26), we find that this condition 
for rn 2 2 will reduce to 

8E{&a2a0a,( 1 - p 2 )  +pol = - (J* - J ) .  (39) 
The term Byei(SLt+o) in equation (26) belongs to the case m = 1. The pertur- 
bation pressure at the interface po, the difference of curvatures, J* - J ,  and the 
perturbation of the bubble shape a,(P, O), can all be expressed in terms of a series 
of the associated Legendre functions with unknown constant coefficients. The 
constant w is the eigenfrequency parameter. Por p ,  we find 

W 

PO = C [AmnPE(ao) +BrnnQE(aO)I J'E(p)ei(wt+mo)* (40) 
n=m 

The dynamic boundary condition (39) is evaluated at the original equilibrium 
boundary of the bubble, a = a,, thus this boundary condition is, apart from the 
factor ei(@t+m*), a function of P only. After some lengthy computations, for the 
quantities 

there results 

17-2 
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x {[ah5) + aL5'b2 + a',")b4 + a(6)p6] Pg(p) + [uf)  + u',")/32 + app41 pPg(p)}, (44) 

where the a?', fc, fD, as well as the k$? and k',") are constants. They have been 
documented by Pao (1 967). 

1. However, the terms involving this 
factor in the denominator remain regular due to the fact that the associated 
functions PE(/3) have a zero of the same or higher order at  these points when 
m 2 2. It is permissible to multiply the equation of the boundary condition by a 
factor (a;-P2))" (1 -pz). By doing so, the boundary condition is reduced to a 
summation of terms of PE(p) with polynomials ofp as the coefficients. It appears 
in the form 

1 

where YE)(/?) (i = 1 ,2 ,3 ,4 ) ,  are polynomials of p. The highest-order terms in the 
polynomials are p8. This boundary condition can be reduced further to a series 
of P,"(p) with constant coefficient by means of the recurrence formula 

The factor (1 -p2) vanishes a t  /? = 

: {[YW) e ( P )  + 9?P?+l((P)I +; [fl?(P) P,"(P) + 9 P E + l ( p ) l }  = 0, (45) 
n= m 

(46) 

c (f g)('O; m, 0) A m K  f m, w )  B&) p z ( p )  = O, (47) 

1 
PPXP) = 2n+l {(n - m + 1) p x 4  + (n + m) Pnml(P)}. 

Then finally, the dynamic boundary condition can be written in the form 
m K=n+8 

n=m K=n-8 

where the f &)(a,; m, w )  and g&)(ao; m, w )  are constants determined by ao, m, n, 
and containing w linearly as an eigenparameter. The coefficients of the poly- 
nomials Pg)(p), as well as the constants f%)(ao; m, w )  and gg)(ao; m, a), which 
follow from equation (45) by repeated application of (46), are obtained numeric- 
ally for given values of m, a, and w. They are generated by the computer program 
and will not be reproduced here. 

A system of linear algebraic equations in terms of A,, and Bmn can be obtained 
by forming the scalar products of this boundary condition and the eigenfunctions 
P?(p) for n 2 m. Together with the exterior boundary condition, there are suffi- 
cient algebraic equations to determine the eigenvalues of w ,  and s~bsequent~l y 
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the eigensolutions of A,, and Bmn, which determine the mode shape of the oscilla- 
tions of the bubble interface. 

In  conclusion, there is one remark concerning the effects of the surface tension 
and the rotation of the entire system. In the final form of the interior boundary 
condition, there is a second summation sign which sums over k for nine non-zero 
terms. In  an elementary oscillation problem, the second summation sign is not 
present. Each simple mode of the harmonic oscillation is distinct. The surface 
tension here induces an interaction among nine simple modes of harmonic oscil- 
lations, while the rotation alone will induce an interaction among three con- 
secutive simple modes. 

If the series representation of the perturbation pressure is truncated to n 
terms only, the boundary conditions can be reduced to a system of (n  - rn) + 2 
linear homogeneous algebraic equations in terms of the (n - m) + 2 unknown 
constants A,, and B,%. Each of the boundary conditions will render half the 
number of linear equations. The eigenvalues of w can be obtained from this system. 

The reduction of the boundary condition to a system of algebraic equations 
is given in the following. 

The exterior boundary condition (28) yields 
m + n  

K =  m 
{q&&,+h~KB,K}=O ( i =  1,23... ,$(n-rn)+1), (48) 

where 9:K = (j %S? 6, P )  p x 4  G'm da, 

= (j @ i h  8, P )  &ad B ( P )  da, 

c 

c 
while the interior boundary condition (47) becomes 
m f n  

K = m  
c {f($(a,;rn,w)A,,+g~(a,;rn,w)B,,} = 0 (i = m,rn+2, ..., m+n) ,  (49) 

where f($(a,; m, w )  and qg(a,; m, w )  are the same as before. Furthermore, the 
coefficients can be written as 

f(&to;m,w) = a g - ( l / w ) b : p ,  

g($(ao; m, 0) = a j p  - (l/w) b g .  

At this point it is convenient to introduce matrix notation to handle the system 
of algebraic equations. All the matrices, G, H ,  A(1), A(2), B@), B(2), defined below, 
are {i(n -m) + l }  x {+(n - m) + I} square matrices. The vectors X and Y are two 
column matrices with *(n - m) + 1 elements. They are 

* B(l) = {b!?} b'9 = b p ,  

B(2) = {b'?.)} p.) = b*(2) H = {hij), 23 *P *1 , 23 aB 3 

ma7 

{a!"'} 23 9 ii a a ~  3 y = {YJY ~i = Bma, 

p = m+2( j -  I ) ,  t 

G = {Sii}, 9, = s i p  % j  , 23 

h.. = h)ic 

(50)  
A(l) = {a(?)] a$) = a:$ X = {xi}, r. = A 

23 7 

,(2) = *(2) 

a=m+2( i -1 ) ,  ( i , j =  1,2 ,......, $(n -m)+ l ) .  
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Then the exterior boundary condition together with the interior boundary con- 
dition can be written in the following concise form 

The solution of this matrix equation yields 

X = -C-lHY ( 5 2 )  

and Y = s-IZ, (53) 

[(At') - AmG-fH) S- l -  ( 1 / w )  El Z = 0. (54) 

where the eigenvalues l / w  and the eigenvectors Z ( = XY) are found from 

3 is the unit matrix, while S-l is the inverse of S = B@)- B(l)C-lH. 

The shape factor 
K 

1.100 
1.200 
1-400 
1.600 
1.800 
2.000 
2.200 

The f i s t  
eigenfrequenc y 

2.296 
2.401 
2.516 
2.620 
2.754 
2.941 
3.168 

The second 
eigenfrequency 

2.409 
2.558 
2.780 
2-977 
3-235 
3.605 
4.007 

The dimensions of the tank: T,, = 2.000, I = 3.000. 

TABLE 1. The first and second eigenfrequencies for bubbles with different shape factors in 
a cylindrical tank with fixed dimensions. 

With given data on the tank dimensions, properties of the liquid, and the speed 
of rotation, numerical results can be obtained easily by performing the computa- 
tions according to this theory on a digital computer. 

The scale of the affine transformation w/(w2 - 4)a has to be chosen at  the be- 
ginning. Through the computation we obtain a new value for w .  Using these two 
values of w a more accurate value of w can be predicted. Very accurate results 
are obtained within two or three steps. 

Numerical computations have been made for the case m = 2. For any specific 
example we are able to compute the first and the second eigenfrequencies ac- 
curately. The result shows that the first eigenfrequency above 2.000 corresponds 
always to the first mode in the meridian plane. Some of the numerical results 
are presented in table 1, figure 1 and figure 2. It is interesting to note that the 
excitation of the interface wave is much more pronounced in the neighbourhood 
of the equator than in the pole regions of the bubble. 

In  the numerical computations n has been taken as large as m + 12, such that 
up to seven non-zero terms in the series are included. At least five non-zero terms 
shall be taken in order to obtain an accurate result. 
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FIGURE 1. The first and second eigenfrequencies plotted versus bubble shape factor K .  
The bubble shape factor K is the ratio of the bubble semi-major axis to the semi-minor 
axis. 

3 O  t 

-1.0 t- 
FIGURE 2. The typical normalized mode shapes in the meridian plane corresponding to the 
first and the second eigenfrequency of the oscillations of the bubble about its position of 
stable equilibrium. 
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4. Solution for the hyperbolic case, w < 2 

In this section, the dynamical response of the rotating fluid system with re- 
spect to the perturbation due to a constant reduced gravity field, transverse 
to the tank axis, will be studied. We know that for the mode of oscillation m = 1, 
the motion has to be accompanied by an external force field. The governing equa- 
tion is hyperbolic. Hence the method of analysis and the mathematical formula- 
tion of the problem are different from the elliptic case. 

For the physical conditions given above, the frequency of the perturbation w 
relative to the rotating system is one. However, the analysis for this particular 
case, as pursued in the following, is valid also for any frequency in the range 
o < w < 2 .  

The mathematical formulation here is written in cylindrical co-ordinates and 
the ‘characteristic co-ordinates ’. The latter will be defined later. 

Now the side conditions for a well-posed problem in the sense of Hadamard are 
different for hyperbolic and elliptic equations. For the present problem, we have 
to  prescribe kinematic boundary conditions at  the cylindrical wall, the disk 
ends and the interface, as well as a dynamic condition a t  the interface. Such a 
system of boundary conditions is too stringent for the solution to exist. We shall 
see that the boundary condition at  the ends of the tank has to be relaxed. Hence 
we are considering a cylinder of infinite length instead of one with finite length. 

Since the differential equation governing the pressure field is hyperbolic, there 
exist real characteristic surfaces in the flow domain. Across these surfaces the 
normal derivatives may be discontinuous. Hence the velocity field will suffer 
a finite jump at  the same location. The work of Oser (1957) provides a good 
example. 

The field equation in cylindrical co-ordinates (7 ,8 ,[)  for the case m = 1 and 

(55)  

transformation P(r ,  896) = r - w L  8,C). (56) 

w = 1 is given by a2p lap 1 a2p -+- - - -pp-3-  = 0. 
av2 7 ar r2 ac2 

The first-order derivative term in this equation can be eliminated by means of the 

For the above hyperbolic equation, there are two families of real characteristic 
curves through each point of the (7, [)-plane. Both of these families are straight 
lines. 

These characteristics may be chosen as our co-ordinate system. The character- 
istic transformation in question is 

(57) 
&+5= % J B X , }  
4 3 7 - c  = 2 4 3 7 ,  

where x = const. and T = const. are the characteristic lines from each of the two 
families. 

Along the characteristic directions, the transformation does not determine the 
second derivatives uniquely. Hence across a characteristic line, the normal deriva- 
tive may suffer a jump. However, the function @ is supposed to be continuous for 
a hydrodynamical problem. 
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Through the transformations (56) and (57), the hyperbolic differential equa- 
tion (55) turns into the normal form 

For this equation two types of problems can be posed. 

( A )  The Cauchy problem 

The initial conditions are prescribed on a curve PQ which is nowhere tangent to  
the characteristic directions. Thus the values of the function @ and its normal 
derivative on this curve are given. A solution exists and is uniquely determined in 

FIGURE 3. Sketch of the Cauchy problem. 

a triangular domain PQR (figure 3). The entire system of differential equations 
and the initial Conditions can be combined into the following integro-differential 
equation (Garabedian 1964): 

This equation can be solved by an iteration technique. This process is proved to 
be convergent. The solution exists in the large when the equation is linear, as 
is the present case. 

(B)  The  Goursat problem 

We may also prescribe one boundary condition on the ordinary (non-character- 
istic) curve and one on a characteristic line. If the value of (3 is prescribed on 
these curves, the problem is called the Goursat problem. A solution exists also and 
is uniquely determined in the triangular domain O T Q  (figure 4). This problem 
can be formulated as an integral equation (Garabedian 1964)) namely, 

This equation can be solved by means of Picard's method of successive approxi- 
mations as in (A) .  When the boundary condition on the ordinary curve is re- 
placed by a mixed type condition 
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the integro-differential equation is somewhat complicated. Let us denote the 
ordinary curve by x = x(7) .  

FIGURE 4. Sketch of the Gourset problem. 

The function x(7)  is strictly monotonic. Then the integro-differential equation in 
question can be written in the form: 

1(7 )  = JTt(T)d7.  0 

The solution of the Goursat problem for a linear equation exists as in case (A) .  
Numerical computations have been performed according to the above given 

integro-differential equations. 
The boundary conditions prescribed for this problem have been derived in 

$2.  They are given by equations (12), (13), (21) and (26). They are listed below 
as rewritten in the cylindrical co-ordinates ( r , 8 , 5 ) .  

The kinematic boundary conditions at the walts of the tunk 

1.5 -+-- @ = 0 a t  the cylindrical wall, 
a7 7 

a@ 
x - = 0 at the plane disk ends. 

The kinematic boundary condition at the interface 

v,-is = 0. 

The normal velocity v, and the normal displacement S of the liquid-vapour 
interface are actually 90" out of phase when 0 and t are taken into account. 

The dynamic boundary condition at the interface 

8E(ys, + P O )  +By = - (J" - J ) ,  

where S, is the component of S in the q-direction. This boundary condition, 
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especially its right-hand side, is very lengthy. We shall replace it by two asymp- 
totic representations. This approximation produces some quantitative errors 
while it demonstrates, however, the qualitative nature of the problem much 
more clearly. 

For a small displacement 6 of the bubbleinterface, thechangeof curvature may 
be approximated by J* - J = d2S/ds2, where ds is a length element measured 
along the generator of the bubble interface. In  the neighbourhood of the equator 
of the bubble, dg N ds. Hence we have the following asymptotic representation 
of the boundary condition 

In the neighbourhood of the poles of the bubble the curvature of the bubble is 
pronounced. The geometry in this region is best described through the spheroidal 
co-ordinates defined in the previous chapters. 

Near the pole the value of cp is small. Thus the change of curvature may be 
written as 

J*- J = ?!!(!!?)2 
dcp2 ds 

The 7-component of the displacement 6, a,, is also very small in this region. It 
can be neglected. Hence we have another asymptotic representation for the 
dynamic boundary condition : 

8Epo+Bsincp = -- 

The quantity (dcplds) approaches one as p approaches zero. 
The combination of the kinematic condition (64) and the dynamical condition 

(65) at  the interface provides us only with one boundary condition for the field 
quation (58). 

The condition of symmetry at the equatorial plane 

plane 
We assume that the flow field is symmetric with respect to the equatorial 

= 0. Hence we have the condition 

There are two more conditions for the determination of the flow field. These 
conditions will be introduced below in connexion with the construction of the 
solution to this problem. 

For a hyperbolic equation discontinuities of the normal derivatives are ad- 
missible across a characteristic line. We shall construct a solution to this problem 
with all the possible discontinuities in mind. Figure 5 shows the division of the 
flow field into regions separated by characteristics where discontinuities may 
occur. In this figure the point G is located such that the bubble is tangent to the 
characteristic line. 
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As indicated earlier, we have to postulate two additional conditions to con- 
struct the flow field. 

(a)  In  the immediate neighbourhood of the equatorial plane, the flow field is 
symmetric. The perturbation velocity normal to this plane vanishes. The bubble 

FIGURE 5. Division of the flow field into regions separated by characteristic 
lines where discontinuities may occur. 

is tangent to a cylinder. Hence the perturbation pressure distribution given in 
Phillips (1960) is exactly the same as the perturbation pressure distribution at  
the equatorial plane. In  our notation there follows 

( 6 )  The perturbation velocity at the axis of rotation is finite. Thus we arrive 
at  the condition @ = 0. 

We can now proceed with the construction of the solution. The condition of 
symmetry at  the equatorial plane together with condition of pressure distribu- 
tion, (67), form a set of initial conditions for the determination of the flow in 
region I. Consequently, the generalized Goursat problems can be defined in 
regions I1 to V successively. Their solutions are obtained by means of equation 
(60) or equation (62). In  region VI, the solution is obtained as follows. 

The displacement of the bubble 6 a t  v = 0 vanishes for the geometrical com- 
patibility requirement. In  a neighbourhood of the pole such that y < JB/8EI, 
both the inertia and the centrifugal field forces are smaller than the surface 
tension and the reduced forces by at  least two orders of magnitude. Integration 
of equation (66) yields 

S = B[( 1 + +(K2 - 1) sin 9 + 6 sin3q] + B y  q, (68) 
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where the constant y is determined by the condition that the displacement at G 
is continuous. By means of equations (64) and (66)) the solution in region V I  is 
determined. 

When we proceed to construct the solution in further regions, we find that the 
problem is overdetermined when the boundary condition at the disk end of the 
tank is prescribed. Consequently a solution to the problem would not exist in 
the entire flow domain at  all. This boundary has to be removed for a solution to 
exist. Once this boundary is removed, we see immediately that the solution ex- 
tends to infinity. Physically it means that a steady-state solution does not exist 
for a tank of finite length. The solution exists for a cylindrical tank of infinite 
length. In  this case the perturbation propagates to infinity immediately. Such an 
unexpected phenomena was found in a similar problem investigated by Ben- 
jamin & Barnard (1964). 

The solution in regions VII, VIII, IX, .... can easily be determined by a 
sequence of generalized Goursat problems. The perturbation field approaches 
zero as we extend the solution to infinity along the c-direction. 

A numerical example is given in figures 6, 7 and 8. From the results obtained 
from this section, we have the following physical picture for the hyperbolic 
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FIGURE 6. The perturbation pressure field for a tank-liquid system, rotating with a con- 
stant angular speed, under the influence of a transverse reduced gravity field. 

case. The liquid-vapour system is stable with respect to the forced perturbation, 
since its dynamic response to the perturbation is an oscillation about the sta- 
tionary equilibrium configuration with a small amplitude. 

In  the region R S G A  (figure 7))  there is a strong exchange between the kinetic 
energy, the energy of the perturbation pressure field, and the centrifugal field 
effects. The effect of surface tension is negligible in this region. There is a strong 
secondary circulation induced by the disturbing forces. 

The disturbances in the region below A G  are small. Centrifugal and inertia 
effects are negligible in this region. The surface tension provides the necessary 
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adjustment to absorb the pressure field perturbations. In  this region, the liquid 
particle performs mainly an oscillatory motion in the neighbourhood of its own 
equilibrium position. 

I ?  

I ‘4 

FIGURE 7. The perturbation velocity field for a tank-liquid system, rotating with a con- 
stant angular speed, under the influence of a transverse reduced gravity field. 
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FIGURE 8. The deformed bubble shape for a tank-liquid system, rotating with a constant 
angular speed, under the influence of a transverse reduced gravity field. 

5.  Conclusions 
In  the previous sections we have determined the dynamic response of the ro- 

tating fluid system for the entire range of frequencies. In conclusion, we shall 
discuss here some of the physical implications of the results obtained above. 

The slow rotation of the system with a constant angular speed has a profound 
effect on the dynamic response. For a rotating system, all the small oscillations 
of the liquid-vapour interface, or rather, of the entire liquid body, are stable. A 
small transverse disturbance to the system will induce one or several models of 
oscillation about the stable equilibrium configuration. 



Oscillations of a vapour cavity 271 

On the other hand, under the influence of a transverse constant force field, 
the stability of the configuration of the system in the neighbourhood of the 
equator of the bubble is ensured by the centrifugal pressure field and the inertia 
force produced by a small perturbation to the constant rotating base flow. The 
surface tension effect is negligible in this region. For a system without rotation, 
a disturbance containing such a force component is liable to excite instability. 

Furthermore for a real system viscosity effects are always present. For a sys- 
tem with rotation, a perturbation will induce some secondary circulation. The 
disturbance will be dissipated by means of the viscous mechanism. The surface 
tension effect alone is a two-dimensional mechanism. It can restore a disturbed 
system to an equilibrium configuration in a much longer period of time. 

This work was performed under National Aeronautics and Space Admini- 
stration Grant no. NsG-542 to the University of Florida. Numerical calculations 
were carried out at  the University of Florida Computing Center. The con- 
structive comments of Dr H. K. Moffatt and of the referees are gratefully 
acknoweldged. 
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